The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission

International Workshop on Instrumentation for Planetary Missions

October 11, 2012

Dennis Reuter and Amy Simon-Miller GSFC Code 693 301-286-2042 dennis.c.reuter@nasa.gov

OSIRIS-REX

- Origins Spectral Interpretation Resource Identification Security Regolith Explorer
 - Third New Frontiers mission
- Sample return from asteroid 1999 RQ36
 - Primitive B-type carbonaceous asteroid, a class that has never been studied up close
- Scheduled for launch in Sept 2016

INSTRUMENTS SUPPORT SAMPLE RETURN BUT ALSO ENHANCE SCIENCE

- OSIRIS-REx Camera Suite (OCAMS)
 - (UA): Provides long-range acquisition of RQ36, along with global mapping, sample-site characterization, sample acquisition documentation, and sub-cm imaging

- OSIRIS-REx Visible and IR Spectrometer (OVIRS)
 - $^{\circ}$ (GSFC): Provides mineral and organic spectral maps and local spectral information of candidate sample sites from 0.4 4.3 μm

- OSIRIS-REx Thermal Emission Spectrometer (OTES)
 - (ASU): Provides mineral and thermal emission spectral maps and local spectral information of candidate sample sites from 4 50 μm

- OSIRIS-REx Laser Altimeter (OLA)
 - (CSA): Provides ranging data; global topographic mapping; and local topographic maps of candidate sample sites

OVIRS CONCEPT OVERVIEW

- Visible-Near IR Spot Spectrometer
- Use Linear Variable Filter (LVF) approach
 - 2-D filter in which the pass-band wavelength varies in 1 dimension
 - Filter placed directly over 2-D array
 - Spectral resolution and band optimized for application
- Spectrometer builds on flight heritage of New Horizons Ralph/LEISA instrument
 - Passive cooling
 - Aluminum Structure and Mirrors for Athermal Design
 - Simple 2-Mirror Optical System
 - Afocal focal plane

OVIRS DESIGN OVERVIEW

- Passively-cooled point spectrometer (0.4 to 4.3-microns)
 - Optical design draws from New Horizons Ralph (LEISA). Similar design and layout, but simplified
 - H1RG detector heritage: HST WFC3, OCO, WISE
 - Only require 512 x 512 quadrant, uses WISE 4.2-µm cutoff array substrate removed HgCdTe
 - SIDECAR ASIC: GSFC experience with JWST, HST ACS, LDCM TIRS
 - 4-millirad FOV
 - Easily modified for 1 2 milliradian
 - 2-meter surface resolution @ 0.5-km altitude sample site reconnaissance phase
 - Four linear variable filter segments (baseline, will be tuned after contract awarded)
 - 0.4 to 0.9 μ m: resolving power ($\lambda/\Delta\lambda$) = 125 (max 7-nm resolution, 200 cm⁻¹ @ 0.4 μ m)
 - 0.9 to 2.0 μ m with resolving power = 150 (max 13-nm resolution, 75 cm⁻¹ @ 0.9 μ m)
 - 2.0 to 4.3 μ m with resolving power = 200 (max 22-nm resolution, 25 cm⁻¹ @ 2.0 μ m)
 - 2.9 to 3.6 μ m with resolving power = 350 (max 10-nm resolution, 10 cm⁻¹ @ 2.9 μ m)

Operations/Modes:

- On (14 W)
- Decontamination (20 W for decon heaters)
- Calibration (+2 W for cal lamps)
- Off (5 W for survival heaters)

FUNCTIONAL BLOCK DIAGRAM

OVIRS MAIN ELECTRONICS BOX (MEB)

OVIRS OPTICS BOX

OVIRS INTERNAL VIEW

EXTREMELY SIMPLE OPTICAL DESIGN

OVIRS Beam Path

INSTRUMENT SUITE LAYOUT

OVIRS ENHANCES SAMPLE RETURN SCIENCE

From approach to sample site characterization (144-km to 30-m range), OVIRS:

OVIRS/OTES Suite Co

- Obtains 0.4 to 4.3-µm spectra, diagnostic for mineralogy and organics
 - Produces, with OTES, unprecedented global visible/IR surface inventory
 - Provides geological context for returned sample
 - Documents scale of surface variability
 - Characterizes space weathering and impact history
 - Constrains Yarkovsky effect thermal emission and solar reflection contributions
- Informs choice of sample site selection and provides context
- Provides connection between ground-based observations and in-situ measurements

SPECTRA DEPEND ON REFLECTION AND EMISSION

IN-HOUSE I&T AND CALIBRATION REDUCES RISK

The Detector Characterization Laboratory (DCL) – Focal plane testing and characterization

EMI/EMC Test chamber

GSFC Vibration test facility in Building 7

Visible/ Infrared in-chamber NIST traceable calibration facility

Thermal/vacuum test facilities